A New and Simple Meshless LBIE-RBF Numerical Scheme in Linear Elasticity

نویسندگان

  • E. J. Sellountos
  • D. Polyzos
  • S. N. Atluri
چکیده

A new meshless Local Boundary Integral Equation (LBIE) method for solving two-dimensional elastostatic problems is proposed. Randomly distributed points without any connectivity requirement cover the analyzed domain and Local Radial Basis Functions (LRBFs) are employed for the meshless interpolation of displacements. For each point a circular support domain is centered and a local integral representation for displacements is considered. At the local circular boundaries tractions are eliminated with the aid of companion solution, while at the intersections between the local domains and the global boundary displacements and tractions are treated as independent variables avoiding thus derivatives of LRBFs. Stresses are evaluated with high accuracy and without derivatives of LRBFs via a LBIE valid for stresses. All the integrations are performed quickly and economically and in a way that renders the extension of the method to three-dimensional problems straightforward. Six representative numerical examples that demonstrate the accuracy of the proposed methodology are provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meshless Local Petrov-Galerkin (MLPG) approaches for solving 3D Problems in elasto-statics

Three different truly Meshless Local Petrov-Galerkin (MLPG) methods are developed for solving 3D elasto-static problems. Using the general MLPG concept, these methods are derived through the local weak forms of the equilibrium equations, by using different test functions, namely, the Heaviside function, the Dirac delta function, and the fundamental solutions. The one with the use of the fundame...

متن کامل

Local weak form meshless techniques based on the radial point interpolation (RPI) method and local boundary integral equation (LBIE) method to evaluate European and American options

For the first time in mathematical finance field, we propose the local weak form meshless methods for option pricing; especially in this paper we select and analysis two schemes of them named local boundary integral equation method (LBIE) based on moving least squares approximation (MLS) and local radial point interpolation (LRPI) based on Wu’s compactly supported radial basis functions (WCS-RB...

متن کامل

Dispersion analysis of the meshless local boundary integral equation (LBIE) method for the Helmholtz equation

Numerical solutions of the Helmholtz equation suffer from numerical pollution especially for the case of high wavenumbers. The major component of the numerical pollution is, as has been reported in the literature, the dispersion error which is defined as the phase difference between the numerical and the exact wave. The dispersion error for the meshless methods can be a priori determined at an ...

متن کامل

A Meshless Method for Numerical Solution of Fractional Differential Equations

In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...

متن کامل

A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods

The essential features of the Meshless Local Petrov-Galerkin (MLPG) method, and of the Local Boundary Integral Equation (LBIE) method, are critically examined from the points of view of a non-element interpolation of the ®eld variables, and of the meshless numerical integration of the weak form to generate the stiffness matrix. As truly meshless methods, the MLPG and the LBIE methods hold a gre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013